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Abstract. The command netivreg implements the Generalized Three-Stage
Least Squares (G3SLS) estimator developed in Estrada et al. (2020, “On the Iden-
tification and Estimation of Endogenous Peer Effects in Multiplex Networks”) and
the Generalized Method of Moments (GMM) estimator in Chan et al. (2022, “On
the Estimation of Social Effects with Observational Network Data and Random As-
signment”) for the endogenous linear-in-means model. The two procedures utilize
full observability of a two-layered multiplex network data structure using Stata’s
new multiframes capabilities and Python integration (version 16 and above). Ap-
plications of the command include simulated data and three years’ worth of data
on peer-reviewed articles published in top general interest journals in Economics.

Keywords: st0001, Instrumental variables, ivregress, multiplex networks, Python

1 Introduction

In various settings, the decision of agents (people, firms, or countries, for example) to
exert effort in some activity depends not only on their own characteristics (direct effects),
but also on the efforts (spillover effect) and characteristics of their peers (contextual
effects). In general, the literature has focused on the linear models of peer effects to
test the existence of potential influences of connections on individual outcomes. Linear
models with social interactions tend to have identification challenges widely recognized
in the econometrics of networks literature. One of the outstanding identification issues
in the field is how to address the endogenous network formation problem (Jackson
et al. 2017). This paper presents the Stata implementation of two estimators capable
of estimating social (spillover, contextual, and direct) effects in contexts where the
network of interest is endogenous. The command netivreg implements the Generalized
Three-Stage Least Squares (G3SLS) estimator developed in Estrada et al. (2020) and
the Generalized Method of Moments (GMM) estimator in Chan et al. (2022) for the
endogenous networks of linear models of social effects.

We consider Manski’s (1993) linear peer effects specification, widely known as the
linear-in-means model, where an outcome variable for agent i ∈ {1, . . . , n}, yi, is deter-
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2 Endogenous peer effects estimation using Stata

mined according to

yi = α+ β
∑
j 6=i

wi,jyj +
∑
j 6=i

wi,jx
>
j δ + x>i γ + vi, (1)

where j ∈ {1, . . . , n}, xi is agent i’s k× 1 vector of attributes; wi,j = 1 if agent j shares
a social connection with i, and is 0 otherwise; vi represents agent i’s unobservables,
and n is the number of agents in the sample. The social network structure is fully
characterized by the square n × n matrix, W, with (i, j) entry given by wi,j ; i.e., the
adjacency matrix. This general econometric network model can be written in matrix
form as

y = ια+ Wyβ + WXδ + Xγ + v, (2)

where the peer effect (captured by β) measures how an agent’s outcome may depend
on those of her peers. The contextual effect, captured by the coefficients δ, occurs
when an agent’s outcome may depend on the exogenous characteristics of her peers,
and the direct effects, captured by the coefficients γ, occurs when an agent’s outcome
may depend on her characteristics.

Under the assumption that E[v|X,W] = 0, the netivreg command implements
Bramoullé et al.’s (2009) Generalized Two-Stage Least Squares (G2SLS) estimator of
the structural parameters ψ ≡ [α, β, δ>,γ>]>. From equation (2), we see that the
G2SLS estimator is a special case of Estrada et al.’s (2020) Generalized Three-Stage
Least Squares (G3SLS) estimator that assumes E[v|X,W0] = 0 instead. The square
n×n matrix, W0, with (i, j) entry given by w0;i,j represents another adjacency matrix
of exogenous connections. The netivreg command also implements the Generalized
Method of Moments (GMM) estimator in Chan et al.’s (2022) where the social interac-
tion network W0 is randomized instead.

The netivreg’s internal numerical implementation of the G3SLS and GMM estima-
tors use the Python language (version 16 and above). It makes full use of Stata’s new
integrability with Python, as well as Stata’s new data frames capabilities to handle the
data sets [y,X], W, and W0; see, e.g., Ho et al. (2021). The command also exploits
Python architecture to handle sparse matrices by asking the user to provide the W,
and W0 adjacency matrices as simple (i, j) lists for all pairs in which wi,j = 1 and
w0;i,j = 1.

1.1 Related Literature

Estimating network effects (peer and contextual effects) under network endogeneity can
be problematic and is an active area of research among social scientists. Recent de-
velopments in the literature propose methodologies that generally require augmenting
the standard linear-in-means model to include specific network formation processes.
Early methods using network formation models to control for network endogeneity in-
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clude Goldsmith-Pinkham and Imbens (2013) and Qu and Lee (2015). More recent ap-
proaches that also use auxiliary network formation models include Johnsson and Moon
(2021), who take a control function approach based on the fitted values of a network
formation model a la Graham (2017). Auerbach (2022) also uses a method based on
matching pairs of similar agents based on the columns of the adjacency matrix repre-
senting the network of interest. Cerulli (2017) presents a complete literature review of
the topic from the perspective of estimating treatment effects under potential network
interference.

The estimation methods that we showcase in this paper differs from previous liter-
ature in that we do not require to specify a structural network formation model. To be
specific, typical network formation models involve additional assumptions such as the
absence of strategic interactions on individuals’ utilities of forming peers. Our agnostic
approach to the network formation mechanism therefore offers an important advantage.
For a complete discussion on the importance of strategic interactions to network for-
mation models’ point-identification, see Graham (2017), De Paula et al. (2018), and
Graham and Pelican (2020).

1.2 Command Prerequisites

The netivreg command requires a working Python 3.7 or higher (Van Rossum and
Drake 2009) distribution already installed – the Anaconda’s (Anaconda Software Dis-
tribution 2020) distribution is strongly recommended. The user will also need to install
the NetworkX (Hagberg et al. 2008), Numpy (Oliphant 2006), Pandas (McKinney et al.
2010), Scikit-learn (Pedregosa et al. 2011), and SciPy (Virtanen et al. 2020) Python
packages and their dependencies. The command also makes use of the Python native
os and sys modules.

The netivreg command works with Stata version 16.0 or higher. The Stata Function
Interface (sfi) Python module shipped with the installed Stata version and flavor is must
work properly as it provides a bidirectional connection between the local installation of
Stata and Python. Table 1 lists the required software and needed versions.

Table 1: Required Software

Language Version Python Packages Version

Stata 16.0 or higher NetworkX 2.4.x
Python 3.7 or higher Numpy 1.20.x

Pandas 1.2.x
Scikit-learn 0.24.x
SciPy 1.6.x

The user is strongly encouraged to create a virtual environment with the required
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Python packages versions listed in Table 1 in order to maintain backward compatibility
as time passes. For example, on Windows, the user can open a command prompt and
create a conda environment using Anaconda as follows,

> conda create -n env_netivreg -c conda-forge python=3.8 ipykernel=6.13.

0 networkx=2.4 numpy=1.20.1 pandas=1.2.4 scikit-learn=0.24.1 scipy=1.6.2

> pip install stata-setup==0.1.2

The previous code creates a conda environment named env_netivreg with Python
3.8 and the necessary packages that netivreg needs to run without errors.

1.3 Real Data Running Example

We use a running real-data example throughout this paper to illustrate the ideas in
the methodology and estimation sections. We also present the results of estimating a
linear-in-means model that aims at quantifying the potential existence of human capital
externalities (peer effects) among scholars publishing in four of the top general-interest
journals in economics. In particular, we use the 729 peer reviewed research articles
published in the American Economics Review (AER), Econometrica (ECA), the Journal
of Political Economy (JPE), and the Quarterly Journal of Economics (QJE) from 2000
to 2002 taken from Estrada et al. (2020). Section 5.2 below describes the data and the
empirical model of interest.

The main goal is to estimate the potential peer effects in citations and the contex-
tual effects from gender and editor-in-charge status while controlling for a set of direct
effects, including articles’ characteristics such as the number of pages, authors, and ref-
erences. Assuming that articles are the unit of observation, we estimate the parameters
of interest. Two articles are connected if at least two of their authors are linked in one
of the two observed networks: the coauthors’ network W and the alumni network W0.

The rest of the paper is organized as follows: Section 2 introduces the theoretical
framework and the identification conditions of model (2) with endogenously-formed
social interactions. The estimation algorithm implemented by the netivreg command
is provided in Section 3, while Section 4 provides the command syntax information.
Section 5 illustrates how to use the command with simulated data and an empirical
application. Section 6 concludes.

2 Methodology

The main idea of the methodology is to propose a set of sufficient conditions to identify
the parameters of interest in equation (1) when the network of interest represented by
W is formed endogenously. We propose two approaches for identification, both founded
on the idea of the existence of an additional set of connections that are exogenous with
respect to v. Let S be a n×(k+1) matrix given by S ≡ [y X] and let θ ≡ (β, δ>)> be
a (k+ 1)× 1 vector of parameter such that βWy + WXδ = WSθ. Therefore, equation
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(2) can be written as

y = αι+ WSθ + Xγ + v. (3)

Estrada et al. (2020) introduces an additional auxiliary system of equations given by

WS = W0SΠ + U, (4)

where Π = [π1, . . . ,πk+1]> represents a full rank (k + 1) × (k + 1) matrix of system
coefficients and the n× (k+ 1) matrix of system errors U is such that E[U|S,W0] = O
(a matrix of zeros). In our running example, the outcome in equation (3) is the natural
logarithm of article i’s citations eight year post publication. The matrix S includes the
outcome variable, whether the research team is all the same gender, and whether the
team consists of an editor in charge of one of the four journals included in the sample.
Notice that WS in equation (4) represents the average values of the variables in S
for the set of connections of each article i in the coauthors network W, while W0S
represents the average for the same variables for the set of connections of each article i
in the alumni network. Therefore, equation (4) represents a regression of average values
of S in W on average values of S in W0.

We use the projection in equation (4) and the assumption that E[v|X,W0] = 0 to
identify the parameters of interest. By substituting (4) in (3), one has

y = αι+ W0SΠθ + Xγ + e, (5)

where e ≡ Uθ+v. However, (5) cannot be estimated by simple Ordinary Least Squares
(OLS) because E[S>W0e] 6= 0; i.e., the simultaneity of W0y still persists and an
Instrumental Variable (IV) procedure is required. Estrada et al. (2020) show that
Wp

0X, where p > 1 is a valid instrument for W0y in (5). In the case when p = 2,
if agents (i, j) have a connection and (j, l) have a connection, it does not necessarily
imply that (i, l) also have a connection. Therefore, following Bramoullé et al. (2009),
results in Estrada et al. (2020) have shown that if the matrices [I, W0, . . . Wp

0] are

linearly-independent and β(γkπ1,1 + πk,1) +
∑k
i=1 δi(γiπ1,i+1 + πk,i+1) 6= 0 for all k,

the social effects ψ are identified. In our running example, the instrumental variable
when p = 2 is the matrix W2

0X, which contains the characteristics of articles that are
indirectly connected via the alumni links.1

The GMM estimator proposed by Chan et al. (2022) does not involve an additional
auxiliary system of equations in (4). Instead, identification follows from the moment
condition that aggregates local heterogeneous identifying information for all the indi-
viduals in the population given by m(ψ) :=

∑
i∈IN zivi, where zi is the ith column

of the matrix of instruments Z ≡ [Wp
0X Wp−1

0 X . . . W0X X ι] for some p ≥ 2.

1. When there are not indirect links, such as when the network is partitioned into connected groups,
the identifying variation comes from differences in groups sizes (Bramoullé et al. 2009).
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Chan et al. (2022) shows that identification is possible in a context where the network of
interest is formed endogenously by taking advantage of the exogeneity (randomization)
and exclusion restrictions on the network represented by W0.

3 Estimation

This section describes the estimation algorithms for the equation of interest 1. We
describe both the Generalized Three-Stage Least Squares (G3SLS) estimator in Estrada
et al. (2020) and the Generalized Method of Moments (GMM) estimator in Chan et al.
(2022).

3.1 Generalized Three-Stage Least Squares (G3SLS)

This estimator uses equation (4) to estimate the social parameters in (2) via (5). This
approach can be reduced to Bramoullé et al.’s (2009) methodology for the case when
W = W0; i.e., the network is exogenous. The algorithm operates as follows.

Step 1: Regress Wy on [W0y W0X] by Ordinary Least Squares (OLS) and get Ŵy =

W0yπ̂1,1 + W0Xπ̂12, and û1 = Wy − Ŵy. In our running example, the regres-
sion of Wy on [W0y W0X] means to run a regression of the average citations
for the articles connected to i in the coauthorship network on the average values
of the outcome and the regressors calculated using the alumni network.

Regress WX on [W0y W0X] by OLS and get ŴX = W0yπ̂21 + W0XΠ̂22

and Û2 = WX − ŴX. This is a system of regressions where the number of
outcomes is determined by the number of variables included in X that generate
contextual effects. For our running example, we include the articles’ characteris-
tics: editor-in-charge and different gender. Each outcome in the regression system
then represents the average value of the regressor for the articles connected to i
in the coauthorship network.

Step 2: Regress y on [ι X W0y W0X] by 2SLS using
[
ι X W2

0X W0X
]

as instru-

ments. From 2SLS, get ψ̂2SLS ≡ [α̂2SLS, γ̂
>
2SLS, θ̂1;2SLS, θ̂

>
2;2SLS]>, where θ̂2SLS ≡(

θ̂1;2SLS

θ̂2;2SLS

)
=
(
π̂1,1 π̂

>
12

π̂21 Π̂22

)−1( θ̂∗1;2SLS

θ̂
∗
2;2SLS

)
=
(
π̂>1

Π̂
>
2

)−1(
θ̂∗1;2SLS

θ̂
∗
2;2SLS

)
.

In our running example, this step translates into runing an IV regression of the
citation outcomes on the linear-in-means model specification using W0 instead of
W and using the square of the exogenous matrix W0 as an instrument for the
endogenous regressor W0y. With the estimated coefficients from this step, we
can calculate an initial estimator of the parameters of interest using the matrix
of estimates from Step 1 given by Π. The parameter ψ̂2SLS contains the peer,
contextual, and direct effects on citations from equation (1).



P. Estrada, J. Estrada, K. Huynh, D. Jacho-Chávez, and L. Sánchez-Aragón 7

Step 3: Regress y on [ι X Ŵy ŴX] by IV using [ι X ẐΠ̂ W0XΠ̂] as instruments,

where Ẑ = W0[I− (π̂>1 θ̂2SLS)W0]−1{ια̂2SLS + Xγ̂2SLS + W0X(Π̂
>
2 θ̂2SLS)}. Call

these IV estimates the resulting G3SLS estimator. From ια̂G3SLS + Xγ̂G3SLS +

Ŵyβ̂G3SLS + ŴXδ̂G3SLS, we get

ψ̂G3SLS ≡ [α̂G3SLS, γ̂
>
G3SLS, β̂G3SLS, δ̂

>
G3SLS]>

and v̂ ≡ y − ια̂G3SLS −Xγ̂G3SLS −Wyβ̂G3SLS −WXδ̂G3SLS.

This final step is required in order to get the efficient estimator of the parameters
of interest. The idea is to run a new IV regression where we now use the efficient

instrument Ẑ instead of W2
0X for the endogenous variable Ŵy. The construction

of the optimal instruments Ẑ requires an initial estimator of the parameters of
interest. We use the estimator ψ̂2SLS from Step 2 to construct Ẑ.

Estrada et al. (2020) show that ψ̂G3SLS is a consistent estimator of the structural

parameters ψ and that
√
n(ψ̂G3SLS −ψ) has an asymptotic multivariate normal distri-

bution with a variance-covariance matrix that can be consistently estimated by

V̂ψ = (n−1
̂̃
Z∗>D̂)−1(n−1

̂̃
Z∗>ê∗ê∗>

̂̃
Z∗)(n−1D̂>

̂̃
Z∗)−1,

where ê∗ = MW0
Ûθ̂G3SLS+v̂ with MW0

≡ I−W0S(S>W2
0S)−1S>W0. The residuals

Û ≡
[
û1 Û2

]
are obtained from step 1, θ̂G3SLS ≡ [β̂G3SLS , δ̂

>
G3SLS]>, and the residuals

v̂ are taken from step 3. Similarly, D̂ = [ι,X,W0y,W0X]Γ̂, where

Γ̂ =

[
Ik+1 Ok+1

Ok+1 Π̂

]
(6)

is a (2k + 2) × (2k + 2) matrix, Ok+1 is a (k + 1) × (k + 1) matrix of zeros, and

Ik+1 represents the identity matrix of order k + 1. The matrix
̂̃
Z
∗

= Ẑ∗Γ̂, where

Ẑ∗ = [ι,X, EX,W0 [W0y](ψ̂2SLS, Π̂),W0X].

3.2 Generalized Method of Moments (GMM)

We can also estimate the social parameters in (2) by directly constructing moment
conditions. First, we set up the moment conditions using the matrix of instruments Z ≡
[Wp

0X Wp−1
0 X . . . W0X X ι] for some p > 1, for the matrix D ≡ [Wy WX X ι].

In our running example, the construction of Z and D only requires defining the set of
regressors in X and considering whether or not the contextual effects include all the
regressors specified for the direct effects. In our empirical estimation, we use only a
subset of the direct effects (editor in charge, same gender, number of pages, number of
authors, number of references, and isolated) to specify the contextual effects (editor in
charge and same gender). We then calculate a two-step GMM estimation as follows:
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Step 1: Pick an initial weighting matrix A, such as the identity matrix I or
(
Z>Z

)−1
, to

calculate ψ̃GMM =
[
D>ZAZ>D

]−1 [
D>ZAZ>y

]
.

Step 2: Calculate the efficient GMM estimator using a consistent estimator of the variance-
covariance matrix Vψ. Chan et al. (2022) propose the network Heteroskedasticity
and Autocorrelation Consistent (HAC) variance estimator:

Ṽψ =
[
D>ZΩ̃?−1Z>D

]−1
(7)

Ω̃? =
∑
d≥0

K (d/D)
1

n

n∑
i=1

∑
j∈Pn(i,d)

zi ẽi ẽj z>j , (8)

where K(·) is a kernel (weighting) function, such that K(0) = 1 and K(u) = 0
for u > 1, and D = C × [log( average degree ∨ (1 + 0.05))]−1 × log n comes from
the rule-of-thumb in Kojevnikov et al. (2021), Pn(i, d) is a set that contains the

nodes at distance d of node i, and ẽi = yi − d>i ψ̃GMM are the residuals using the
GMM estimator of the first step. In the second step, the feasible efficient GMM
estimator uses Ṽ−1ψ as a weighting matrix, so that

ψ̂
?

GMM =
[
D>ZṼ−1ψ Z>D

]−1 [
D>ZṼ−1ψ Z>y

]
.

Again, to conduct Steps 1 and 2 empirically, we only need to define the set of
regressors in the sets of variables generating both contextual and direct effects.
The user also has to determine values for the kernel and some hyperparameters
determining the HAC estimator to calculate the efficient GMM estimator. In the
implementation, we set those values based on the rule-of-thumb in Kojevnikov
et al. (2021).

Chan et al. (2022) show that, under a weak-dependence assumption in the net-

work of agents, ψ̂
?

GMM is a consistent estimator of the structural parameters ψ and
√
n(ψ̂

?

GMM − ψ) has an asymptotic multivariate normal distribution with a variance-

covariance matrix that can be consistently estimated by [D>ZΩ̂?−1Z>D]−1, where Ω̂?

is calculated as in (8) but instead uses ψ̂
∗
GMM.

4 The netivreg Command

This section describes the full syntax of the new netivreg command. Stata 16.0 is the
earliest version that can run netivreg and a working Python 3.0 or higher installation
with the required packages listed in 1.2 are also needed. The netivreg does not use a
Stata matrix or spmat object to store the adjacency matrices W and W0, but does use
the Python package Numpy’s sparse matrices architecture inside the NetworkX package
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to handle them in the numerical implementations. Therefore, once the primary node-
specific dataset is loaded into memory, both adjacency matrices must be provided as
adjacency lists instead of as Stata frames; see Section 5.1.

By default, the netivreg command expects these adjacency matrices to describe
directed graphs. Therefore, the user must remember to list both entries (i, j) and (j, i)
when working with undirected graphs.

4.1 Syntax

The syntax of netivreg is as follows:

netivreg estimator depvar varlist1 (W = W0)
[
, options

]
.

netivreg estimates a linear-in-means regression of depvar on varlist1 and the social
interaction network W using the exogenous network W0 as the instrument of the endoge-
nous network W. The social networks W and W0 are defined by two adjacency lists stored
as Stata frames.

estimator specifies the estimation procedure. There are two options: g3sls, which
estimates via Generalized Three-Stage Least Squares, and gmm, which estimates a Gen-
eralized Method of Moments.

4.2 Model Options

wx(varlist2) indicates the variables from varlist1 to be included as contextual effects.
By default, it includes all the variables from varlist1.

id(varname) identifies the variable to match covariates with the network data. The
default varname is id.

4.3 G3SLS Options

first reports the first-stage results of the linear projection of WS on WS0.

second reports the second-stage results of the 2SLS estimation of the linear-in-means
model.

transformed estimates the linear-in-means model with the transformed variables mul-
tiplied by (I−W0).

cluster(varname) produces standard errors and statistics that are robust to both
arbitrary heteroskedasticity and intragroup correlation, where varname identifies
the group. The default is non-clustered standard errors.
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4.4 GMM Options

wz(varlist3) is the list of variables used as instruments for varlist2.

maxp(#) is the max p-exponent of the exogenous matrix Wp
0 to include in the set of

instruments. The default is p = 2.

wmatrix(wmtype) specifies the type of weighting matrix in the GMM estimation. For
the one-step GMM estimation, use identity or instrument. For a two-step efficient
GMM estimation use optimal by default.

kernel(type) is the kernel function used to calculate network HAC variance estimator.
There are three options: th for Tukey-Hanning, truncated, or parzen (this is the
default).

cons(#) is the constant used to calculate rule of thumb of bandwidth. The default is
C = 1.8.

4.5 Stored Results

netivreg stores the following in e():

Scalars
e(N) number of observations e(mss) model sum of squares
e(df m) model degrees of freedom e(r2) R-squared
e(df r) residual degrees of freedom e(r2 a) adjusted R-squared
e(rank) rank of e(V) e(rmse) root mean squared error
e(chi2) chi-squared e(N clust) number of clusters
e(rss) residual sum of squares

Macros
e(cmd) netivreg e(exogr) exogenous regressor
e(wx) contextual effects e(depvar) name of dependent variable
e(clustvar) name of cluster variable e(properties) b V

Matrices
e(b) coefficient vector e(V) variance–covariance matrix of

the estimators
e(first) first-stage regression results e(second) second-stage regression results

5 Examples

In this section, we illustrate the netivreg command’s estimation capabilities simulated
data and three years’ worth of data on peer-reviewed articles in Estrada et al. (2020).
The command requires two types of data files. The first one contains the outcome
variable and covariates in the traditional format; i.e., a unit record per row (nodes data
file). The second contains all the pair-wise associations per network among units (edges’
data files). Note that at least one edge data file is needed apart from the nodes data
file.
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5.1 Simulated Data

We use the following version of the linear-in-means model in (1):

yi =1 + 0.7

n∑
j=1

wijyj + 0.33

n∑
j=1

wijx1i + 0.33

n∑
j=1

wijx2i + 0.33

n∑
j=1

wijx3i

+ 0.33x1i + 0.33x2i + 0.33x3i + vi, (9)

where xki are drawn from an independent and identically (i.i.d.) normal random variable
with a mean of zero and a variance of 3 for k = 1, 2, 3, which are independent of each
other. The weights wij are row-normalized versions of the adjacency matrix W = [wij ],
i.e., wij = wij/

∑n
j=1 wij . The W adjacency matrix is generated from W0 = [w0;ij ]

which in turn is generated from a Erdös and Rényi’s (1959) random graph with a
density of 0.01. Two sets of i.i.d. variables, ε∗1i and ε2i, are drawn from standard
normal distributions and

wij =


I[|ε∗1i − ε∗1j | < F̂−1ε∗1

(0.95)]× (1− w0;ij) + w0;ij ; if ε∗1i > Φ−1(0.95),

I[|ε∗1i − ε∗1j | < F̂−1ε∗1
(0.95)]× w0;ij ; if ε∗1i < Φ−1(0.05),

w0;ij ; otherwise,

where F̂−1ε∗1
(0.95) represents the 95% empirical quantile of the ε∗1i sample; Φ−1(·) repre-

sents the inverse of the cumulative distribution function of a standard normal random
variable; and I(·) is the indicator function that equals one if its argument is true, and
is zero otherwise.

The structural error in (9) is then defined as vi = m× ε1i + ε2i, where

ε1i =

{
ε∗1i ; if ε∗1i < Φ−1(0.05) or ε∗1i > Φ−1(0.95),

0 ; otherwise.

The design parameter m ∈ {0, 1} acts as a switch to generate either an exogenous W
adjacency matrix (m = 0) or an endogenous one (m = 1). The sample size is set to
n = 400.

One first needs to import the nodes data file that contains the nodes’ outcome
variable and covariates.

. use data_sim.dta

. format y_endo y_exo x1 x2 x3 x4 %9.3f

. list in 1/5, table

id y_exo y_endo x1 x2 x3 x4

1. 1 4.072 4.555 -0.523 0.926 2.136 -0.546
2. 2 4.584 4.665 2.611 1.455 -0.926 0.759
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3. 3 3.887 3.671 3.125 0.513 -2.718 -2.132
4. 4 3.736 3.962 -2.674 1.504 1.769 0.091
5. 5 6.360 7.002 -0.993 0.345 1.126 1.120

The data_sim.dta identifies each node by the id variable and two outcomes; i.e.,
y_exo when there is no endogeneity (m = 0), and y_endo when there is (m = 1).
The nodes dataset also includes the covariate x4, which was generated from a standard
normal distribution independent of the outcome variables and covariates x1, x2, and
x3.

The edges’ datasets have the following structure:

. use W_sim.dta

. list in 113/117, table

source target

113. 28 259
114. 28 361
115. 29 67
116. 29 79
117. 29 196

and

. use W0_sim.dta

. list in 113/117, table

source target

113. 30 167
114. 30 325
115. 31 38
116. 31 83
117. 31 132

where each row records the connection between the node listed as id in the data_sim.dta
as either source or target. This structure allows for directed or undirected network
data. When the netivreg command is invoked, all the unique identifiers under source
and target are a subset of those listed as id in the data_sim.dta will be checked. The
command generates an error otherwise. Nodes that are not listed in either column of
these edges’ datasets are assumed to be isolated and their corresponding row/column
in the adjacency matrices will be zero.
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Exogenous Network

If the adjacency matrix W is exogenous, it can then be used as an instrument for itself
and Estrada et al.’s (2020) G3SLS collapses to Bramoullé et al.’s (2009) G2SLS and the
netivreg command produces,

. use data_sim.dta

. frame create edges

. frame edges: use data/W_sim.dta

. netivreg g3sls y_exo x1 x2 x3 x4 (edges = edges)

Network IV (G3SLS) Regression Number of obs = 400
Wald chi2(10) = 2021.41
Prob > chi2 = 0.0000
R-squared = 0.8571
Root MSE = .966

y_exo Coefficient Std. err. t P>|t| [95% conf. interval]

W_y
y_exo .7187389 .0459317 15.65 0.000 .6284341 .8090436

W_x
x1 .3628661 .0614882 5.90 0.000 .2419763 .4837559
x2 .3197861 .051635 6.19 0.000 .2182683 .421304
x3 .3968142 .0558112 7.11 0.000 .2870856 .5065427
x4 .0671387 .0886706 0.76 0.449 -.1071935 .2414709

X
x1 .3749567 .0303577 12.35 0.000 .3152716 .4346419
x2 .3971781 .0302632 13.12 0.000 .3376787 .4566774
x3 .3118756 .0282055 11.06 0.000 .2564218 .3673295
x4 .0614943 .0490757 1.25 0.211 -.0349917 .1579803

_cons .9875521 .1453766 6.79 0.000 .7017322 1.273372

As expected, the G2SLS estimates are numerically close to the actual parameters in (9)
and the irrelevance of x4 is picked up by the default heteroskedastic-robust t statistics.
However, the G3SLS remains a valid and consistent estimator and it can be computed
as follows:

. netivreg g3sls y_exo x1 x2 x3 x4 (edges = edges0)

Network IV (G3SLS) Regression Number of obs = 400
Wald chi2(10) = 1495.20
Prob > chi2 = 0.0000
R-squared = 0.8562
Root MSE = .9712

y_exo Coefficient Std. err. t P>|t| [95% conf. interval]

W_y
y_exo .7066647 .0675054 10.47 0.000 .5739446 .8393847

W_x
x1 .3804765 .0824964 4.61 0.000 .2182832 .5426697
x2 .328785 .0662719 4.96 0.000 .1984902 .4590798
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x3 .4072332 .0686797 5.93 0.000 .2722045 .5422619
x4 .0585146 .1069111 0.55 0.584 -.1516796 .2687087

X
x1 .371649 .0390688 9.51 0.000 .2948372 .4484607
x2 .3661416 .0339244 10.79 0.000 .299444 .4328392
x3 .3176699 .0329671 9.64 0.000 .2528543 .3824855
x4 .0702635 .0545833 1.29 0.199 -.0370508 .1775777

_cons 1.014104 .2062919 4.92 0.000 .6085203 1.419687

The GMM estimator also presents similar results:

. frame create edges0

. frame edges0: use data/W0_sim.dta

. netivreg gmm y_exo x1 x2 x3 x4 (edges = edges0)

Network IV (GMM) Regression Number of obs = 400
Wald chi2(10) = 2595.42
Prob > chi2 = 0.0000
R-squared = 0.8528
Root MSE = .9813

y_exo Coefficient Std. err. t P>|t| [95% conf. interval]

W_y
y_exo .6724429 .0641775 10.48 0.000 .5462656 .7986201

W_x
x1 .4260427 .0713216 5.97 0.000 .2858197 .5662657
x2 .3527208 .0503766 7.00 0.000 .2536772 .4517644
x3 .4349574 .057245 7.60 0.000 .3224099 .5475048
x4 .0389376 .0578986 0.67 0.502 -.0748949 .15277

x1 .3812431 .0281434 13.55 0.000 .3259113 .4365748
x2 .4107493 .0194691 21.10 0.000 .3724718 .4490268
x3 .3255457 .0189618 17.17 0.000 .2882657 .3628258
x4 .0422976 .0460273 0.92 0.359 -.0481951 .1327904

_cons 1.090851 .203117 5.37 0.000 .6915098 1.490192

One observes that the estimates are again numerically close to the true values of the
parameters and the regressor x4 is insignificant in both G3SLS and GMM.

Endogenous Network

In the endogenous network formation case, the G2SLS becomes inconsistent; how-
ever the G3SLS and GMM both remain consistent. The basic implementation using
netivreg for G3SLS is

. netivreg g3sls y_endo x1 x2 x3 x4 (edges = edges0)

Network IV (G3SLS) Regression Number of obs = 400
Wald chi2(10) = 822.26
Prob > chi2 = 0.0000
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R-squared = 0.8176
Root MSE = 1.194

y_endo Coefficient Std. err. t P>|t| [95% conf. interval]

W_y
y_endo .7059194 .0934719 7.55 0.000 .5221476 .8896911

W_x
x1 .3464024 .1277675 2.71 0.007 .0952031 .5976017
x2 .3280795 .0870187 3.77 0.000 .1569951 .4991639
x3 .3615469 .0926147 3.90 0.000 .1794604 .5436334
x4 .0500988 .1476019 0.34 0.734 -.2400962 .3402939

X
x1 .3782985 .0560235 6.75 0.000 .2681526 .4884443
x2 .3287283 .0426851 7.70 0.000 .2448066 .4126499
x3 .3442047 .0483468 7.12 0.000 .2491518 .4392576
x4 .0895948 .0745045 1.20 0.230 -.0568859 .2360756

_cons 1.035534 .3189017 3.25 0.001 .4085523 1.662515

For GMM, we observe

. netivreg gmm y_endo x1 x2 x3 x4 (edges = edges0)

Network IV (GMM) Regression Number of obs = 400
Wald chi2(10) = 5414.09
Prob > chi2 = 0.0000
R-squared = 0.8166
Root MSE = 1.194

y_endo Coefficient Std. err. t P>|t| [95% conf. interval]

W_y
y_endo .7039281 .076149 9.24 0.000 .5542141 .853642

W_x
x1 .3493545 .0781754 4.47 0.000 .1956565 .5030524
x2 .3245619 .0617699 5.25 0.000 .2031183 .4460055
x3 .3614537 .0623149 5.80 0.000 .2389385 .4839689
x4 .0621016 .0714393 0.87 0.385 -.0783528 .2025561

x1 .3877009 .0324968 11.93 0.000 .32381 .4515918
x2 .3859661 .0204085 18.91 0.000 .3458416 .4260905
x3 .3290334 .0246893 13.33 0.000 .2804925 .3775742
x4 .0275173 .0521742 0.53 0.598 -.0750606 .1300951

_cons 1.025602 .2586684 3.96 0.000 .5170425 1.534161

In the case of the G3SLS, the option first prints the point estimates Π̂, as well as
the heteroskedastic-robust standard errors in Step 1 of Section 3.1.

. netivreg g3sls y_endo x1 x2 x3 x4 (edges = edges0), first

Projection of W on W0

Coefficient Std. err. t P>|t| [95% conf. interval]
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W_y_endo
W0_y_endo .9927161 .0110994 89.44 0.000 .9708939 1.014538

W0_x1 .0038403 .0419735 0.09 0.927 -.0786823 .086363
W0_x2 -.0030277 .0372046 -0.08 0.935 -.0761744 .070119
W0_x3 .0010825 .0378073 0.03 0.977 -.0732492 .0754142
W0_x4 .002885 .0664465 0.04 0.965 -.1277531 .133523

W_x1
W0_y_endo -.0924276 .0041002 -22.54 0.000 -.1004889 -.0843663

W0_x1 .8743972 .0155054 56.39 0.000 .8439126 .9048817
W0_x2 .0074888 .0137437 0.54 0.586 -.0195322 .0345098
W0_x3 .0466023 .0139664 3.34 0.001 .0191436 .0740611
W0_x4 .0143088 .0245459 0.58 0.560 -.03395 .0625676

W_x2
W0_y_endo -.0142514 .0034378 -4.15 0.000 -.0210103 -.0074925

W0_x1 -.010898 .0130003 -0.84 0.402 -.0364575 .0146614
W0_x2 .9506398 .0115233 82.50 0.000 .9279843 .9732953
W0_x3 .0197406 .0117099 1.69 0.093 -.0032819 .0427631
W0_x4 .0103946 .0205802 0.51 0.614 -.0300675 .0508567

W_x3
W0_y_endo -.0311842 .0037837 -8.24 0.000 -.0386233 -.0237451

W0_x1 .0378469 .0143085 2.65 0.008 .0097153 .0659784
W0_x2 .0052678 .0126829 0.42 0.678 -.0196675 .0302031
W0_x3 .9225525 .0128883 71.58 0.000 .8972132 .9478918
W0_x4 -.0186094 .0226513 -0.82 0.412 -.0631432 .0259244

W_x4
W0_y_endo .0140097 .0025567 5.48 0.000 .0089831 .0190363

W0_x1 .0419752 .0096683 4.34 0.000 .0229667 .0609838
W0_x2 .021705 .0085698 2.53 0.012 .0048561 .0385539
W0_x3 -.0496623 .0087087 -5.70 0.000 -.0667841 -.0325404
W0_x4 .8994643 .0153055 58.77 0.000 .8693726 .9295559

Network IV (G3SLS) Regression Number of obs = 400
Wald chi2(10) = 822.26
Prob > chi2 = 0.0000
R-squared = 0.8176
Root MSE = 1.194

y_endo Coefficient Std. err. t P>|t| [95% conf. interval]

W_y
y_endo .7059194 .0934719 7.55 0.000 .5221476 .8896911

W_x
x1 .3464024 .1277675 2.71 0.007 .0952031 .5976017
x2 .3280795 .0870187 3.77 0.000 .1569951 .4991639
x3 .3615469 .0926147 3.90 0.000 .1794604 .5436334
x4 .0500988 .1476019 0.34 0.734 -.2400962 .3402939

X
x1 .3782985 .0560235 6.75 0.000 .2681526 .4884443
x2 .3287283 .0426851 7.70 0.000 .2448066 .4126499
x3 .3442047 .0483468 7.12 0.000 .2491518 .4392576
x4 .0895948 .0745045 1.20 0.230 -.0568859 .2360756

_cons 1.035534 .3189017 3.25 0.001 .4085523 1.662515
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The option second prints the point estimates, ψ̂2SLS, and the heteroskedastic-robust
standard errors in Step 2 of Section 3.1.

. netivreg g3sls y_endo x1 x2 x3 x4 (edges = edges0), second

2SLS Regression Number of obs = 400
Wald chi2(10) = 839.20
Prob > chi2 = 0.0000
R-squared = 0.8095
Root MSE = 1.224

y_endo Coefficient Std. err. t P>|t| [95% conf. interval]

W_y
y_endo .6568384 .1030623 6.37 0.000 .4542113 .8594655

W_x
x1 .3798965 .1172551 3.24 0.001 .1493653 .6104278
x2 .3556006 .0846906 4.20 0.000 .1890934 .5221079
x3 .3883685 .0915501 4.24 0.000 .208375 .568362
x4 .0558494 .1324023 0.42 0.673 -.2044623 .316161

X
x1 .386902 .0569697 6.79 0.000 .2748958 .4989081
x2 .3387842 .0433598 7.81 0.000 .2535361 .4240324
x3 .35358 .0498306 7.10 0.000 .2556099 .4515501
x4 .0933147 .0753217 1.24 0.216 -.0547726 .2414021

_cons 1.194332 .3562142 3.35 0.001 .4939918 1.894673

Network IV (G3SLS) Regression Number of obs = 400
Wald chi2(10) = 822.26
Prob > chi2 = 0.0000
R-squared = 0.8176
Root MSE = 1.194

y_endo Coefficient Std. err. t P>|t| [95% conf. interval]

W_y
y_endo .7059194 .0934719 7.55 0.000 .5221476 .8896911

W_x
x1 .3464024 .1277675 2.71 0.007 .0952031 .5976017
x2 .3280795 .0870187 3.77 0.000 .1569951 .4991639
x3 .3615469 .0926147 3.90 0.000 .1794604 .5436334
x4 .0500988 .1476019 0.34 0.734 -.2400962 .3402939

X
x1 .3782985 .0560235 6.75 0.000 .2681526 .4884443
x2 .3287283 .0426851 7.70 0.000 .2448066 .4126499
x3 .3442047 .0483468 7.12 0.000 .2491518 .4392576
x4 .0895948 .0745045 1.20 0.230 -.0568859 .2360756

_cons 1.035534 .3189017 3.25 0.001 .4085523 1.662515

The researcher must not ignore potential endogenous network formation issues; oth-
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erwise, the resulting estimators of the peer and contextual effects can be severely biased.
Our estimation results suggest that if we ignore endogenous network formation and use
the G2SLS estimator instead, the peer effects result in a value of 0.97, which represents a
bias of 0.27 (or 38%) for the true value of 0.7. The contextual effects will also be affected
with bias levels of 0.18, 0.2, and 0.09 (or 54%, 60%, and 27%), respectively. Finally, the
direct effects include some bias when the researcher ignores network endogeneity.

. netivreg g3sls y_endo x1 x2 x3 x4 (edges = edges)

Network IV (G3SLS) Regression Number of obs = 400
Wald chi2(10) = 1797.04
Prob > chi2 = 0.0000
R-squared = 0.8379
Root MSE = 1.104

y_endo Coefficient Std. err. t P>|t| [95% conf. interval]

W_y
y_endo .9775033 .0571161 17.11 0.000 .8652093 1.089797

W_x
x1 .1499146 .0678751 2.21 0.028 .0164676 .2833615
x2 .1307811 .058853 2.22 0.027 .0150721 .24649
x3 .247199 .0626421 3.95 0.000 .1240406 .3703573
x4 .067066 .0943664 0.71 0.478 -.1184645 .2525964

X
x1 .3444555 .0350054 9.84 0.000 .2756326 .4132784
x2 .3254792 .0347623 9.36 0.000 .2571344 .3938241
x3 .2759635 .0316605 8.72 0.000 .2137169 .33821
x4 .0595883 .0571877 1.04 0.298 -.0528464 .1720231

_cons .1586211 .2008155 0.79 0.430 -.2361952 .5534375

5.2 Real Data

We use all 729 peer reviewed research articles published in the American Economics
Review (AER), Econometrica (ECA), the Journal of Political Economy (JPE), and the
Quarterly Journal of Economics (QJE) from 2000 to 2002 taken from Estrada et al.
(2020) as an example of using the linear-in-means model with real data. The article
specific information is as follows:

. use articles.dta
(Data on articles published in the aer, eca, jpe, & qje between 2000-2002)

. describe

Contains data from articles.dta
obs: 729 Data on articles published in the aer,

eca, jpe, & qje between 2000-2002
vars: 12 12 Sep 2020 14:09

storage display value
variable name type format label variable label

id int %9.0g Article unique identifier
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lcitations float %9.0g Log of total citations 8 years post
publication

editor int %8.0g 1 if at least one of the article´s authors
was an editor of a T4 journal

diff_gender int %8.0g 1 if article´s co-authors are of different
gender

isolated int %8.0g 1 if an article does not share a
co-authorship relationship with others

n_pages byte %8.0g Article´s number of pages
n_authors int %8.0g Article´s number of authors
n_references int %8.0g Article´s number of bibliographic references
journal int %9.0g journallab

Journal=aer,eca,jpe,qje
year int %9.0g yearlab Year=2000,2001,2002
c_alumni int %9.0g Alumni network components unique identifiers
c_coauthor int %8.0g Co-author network components unique

identifiers

Sorted by: year journal id

The AER publishes the largest number of research articles, but on average papers
published in the QJE received the most citations eight years post publication. The total
number of articles published in these journals increased from 2000 to 2002.

. gen citations = exp(lcitations)

. tabulate journal year, summarize(citations)

Means, Standard Deviations and Frequencies of citations

Journal=ae
r,eca,jpe, Year=2000,2001,2002

qje 2000 2001 2002 Total

aer 52.417721 54.931821 48.652174 51.934364
73.653308 90.712233 49.893607 72.800192

79 88 92 259

eca 49.627451 43.328125 37.177779 42.195122
52.045351 51.688336 43.565161 48.397466

51 64 90 205

jpe 34.530612 32.863637 46.666667 38.141844
26.257619 30.229811 35.717172 31.362075

49 44 48 141

qje 59.380952 72.285714 102.475 77.653226
74.70297 47.771446 100.33303 78.338854

42 42 40 124

Total 49.131221 50.794119 52.448149 50.902607
61.651186 66.741361 60.112435 62.735929

221 238 270 729

In this timeframe, papers in these four journals are on average 25 pages long, written
by two co-authors, and have roughly 31 bibliographic references. Co-authors of different
genders wrote about 13% of the articles and only 4.5% of them were listed as co-author
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and editors-in-charge of any of these journals. Finally, around 53% of the articles do
not share a coauthorship relationship with others (see below).

. summarize editor diff_gender isolated n_pages n_authors n_references

Variable Obs Mean Std. Dev. Min Max

editor 729 .0452675 .208033 0 1
diff_gender 729 .1303155 .3368814 0 1

isolated 729 .5281207 .4995513 0 1
n_pages 729 25.15775 11.53631 3 76

n_authors 729 1.888889 .7486251 1 5
n_references 729 31.40329 17.84755 0 177

Networks

As explained in Estrada et al. (2020), we can construct two types of connections among
these 729 research articles. Since the names of each article’s authors are known, a
co-authors relationship can be formed among them; i.e.,

. frame create edges

. frame edges: use edges.dta
(Co-authorship network among articles published in the aer, eca, jpe, & qje betwe)

. frame edges: list in 1/5, table

source target

1. 4 472
2. 5 221
3. 5 463
4. 5 478
5. 5 665

. frame create edges0

. frame edges0: use edges0.dta
(Alumni network among articles published in the aer, eca, jpe, & qje between 2000)

. frame edges0: list in 1/5, table

source target

1. 2 482
2. 2 534
3. 4 129
4. 4 136
5. 4 407

The article with an id number of 4 is connected to the article with an id number of
472 in the edges.dta frame because at least one of these articles’ authors is the same.
We refer to these connections as the co-authors’ network among articles. Similarly, since
authors’ information was web-scrapped or text mined from online profiles, Estrada et al.
(2020) also provides alumni connections among articles. For example, the article with
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an id number of 4 is connected with articles 129, 136, and 407 in the edges0.dta frame
because at least one of these articles’ authors overlapped at least three years of graduate
school at the same institution.

Table 2 displays network descriptive statistics for the co-authors and alumni net-
works. We use the Python package NetworkX to calculate the statistics of the network
data.

Table 2: Network Descriptive Statistics

Statistics Co-authors (W) Alumni (W0)

Number of nodes 729 729
Number of edges 674 8,838
Average degree 1.85 24.25
Density 0.00 0.03
Average clustering 0.71 0.55
Isolated nodes 385 41

Note: The degree of a node in a network is the number
of connections (edges) it has to other nodes. The density
of a network is the portion of the potential connections in
a network that are actual connections. The average clus-
tering of a network is the average of the local clustering
coefficients of all the nodes, where the local clustering co-
efficient of a node is the proportion of edges between the
nodes within its neighborhood divided by the number of
edges that could possibly exist between them.

The typical article has only two connections (edges) in the co-authors’ network, but
we see about 24 in the alumni network; i.e., there are considerably more connections in
the latter network (number of edges). Both networks have very low density and there
are about ten times more articles that do not have a co-author connection than those
that do not share an alumni connection.

Estimation

The empirical model of interest is

yi,r,t = α+ β
∑
j 6=i

wi,jyj,r,t +
∑
j 6=i

wi,jx
>
j,r,tδ + x>i,r,tγ

+ λr + λt + vi,r,t, (10)

where yi,r,t represents the natural logarithm of article i’s citations eight years post pub-
lication (lcitations) in journal r in year t; xj,r,t includes diff_gender and editor
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of article j in journal r in year t; and xi,r,t include the same characteristics for article
i plus its number of pages (n_pages), authors (n_authors), bibliographic references
(n_references), and whether or not it shares a co-author relationship with other ar-
ticles (isolated). Fixed effects include journal (λr) and year (λt). We assume that
the co-authors’ network (W) is endogenous and that the alumni network (W0) is pre-
determined and is therefore assumed to be exogenous. The estimation of model (10)
yields

. netivreg g3sls lcitations editor diff_gender n_pages n_authors n_references
> isolated journal2-journal4 year2-year3 (edges = edges0), wx(editor diff_gender)
> cluster(c_coauthor)

Network IV (G3SLS) Regression Number of obs = 729
Number of clusters (c_coauthor) = 575 Wald chi2(15) = 253.67

Prob > chi2 = 0.0000
R-squared = 0.1312
Root MSE = 1.308

(Std. err. adjusted for 575 clusters in c_coauthor)

lcitations Coefficient Std. err. t P>|t| [95% conf. interval]

W_y
lcitations .2694309 .1342212 2.01 0.045 .0059155 .5329462

W_x
editor 4.309042 4.700963 0.92 0.360 -4.920321 13.53841

diff_gender -2.588718 2.648238 -0.98 0.329 -7.787981 2.610546

X
editor .2174085 .1042592 2.09 0.037 .0127173 .4220996

diff_gender .2156686 .1196222 1.80 0.072 -.0191848 .450522
n_pages .0288559 .004115 7.01 0.000 .020777 .0369349

n_authors .0551324 .0557331 0.99 0.323 -.0542879 .1645528
n_references .0116497 .0023924 4.87 0.000 .0069526 .0163468

isolated -.2149587 .0830938 -2.59 0.010 -.3780962 -.0518213

(output omitted )

_cons 1.974159 .2279187 8.66 0.000 1.526688 2.42163

Using GMM, we obtain

. netivreg gmm lcitations editor diff_gender n_pages n_authors n_references
> isolated journal2-journal4 year2-year3 (edges = edges0), wx(editor diff_gender)
> wz(editor diff_gender n_pages n_authors n_references isolated) maxp(4)

Network IV (GMM) Regression Number of obs = 729
Wald chi2(15) = 268.30
Prob > chi2 = 0.0000
R-squared = 0.1637
Root MSE = 1.08

lcitations Coefficient Std. err. t P>|t| [95% conf. interval]

W_y
lcitations .6824698 .2845921 2.40 0.017 .1237325 1.241207
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W_x
editor .296526 .5227753 0.57 0.571 -.7298345 1.322887

diff_gender -2.766341 1.042483 -2.65 0.008 -4.81304 -.719642

X
editor -.2539077 .2636978 -0.96 0.336 -.7716236 .2638082

diff_gender .559131 .1486833 3.76 0.000 .2672223 .8510397
n_pages .029408 .0047013 6.26 0.000 .0201779 .038638

n_authors .0119978 .0541688 0.22 0.825 -.0943514 .118347
n_references .0071013 .0027243 2.61 0.009 .0017528 .0124499

isolated 1.745843 1.026178 1.70 0.089 -.2688442 3.760531

(output omitted )

_cons .4873031 .9724358 0.50 0.616 -1.421872 2.396479

For the GMM estimation, we reject the hypothesis of a null peer effect at the 5%
level of significance against a positive peer-effect hypothesis; i.e., a 10% increase in the
number of citations of connected articles increases a paper’s citations by 6.8%. Using
G3SLS, we also reject the null hypothesis at a 5% level of significance with a lower
estimated coefficient of peer effects. Holding everything else constant, articles with a
larger number of pages and bibliographic references get cited more often, as do articles
written by authors of different genders at the 1% level of significance.

6 Conclusion

This article shows how the new netivreg command fits a linear-in-means model with
network data. Both exogenous and endogenous network formations are supported. The
netivreg main estimation routine is written entirely in Python using Stata’s integra-
tion with Python (version 16 or later). The command utilizes Stata’s new multiframe
capabilities to handle the required network data structure in the form of adjacency
lists. These, in turn, are converted to sparse matrices within Python for numerical
implementation. The basic capabilities of the netivreg command are illustrated with
simulated data and an empirical application based on peer-reviewed articles published
in four top general interest journals in economics. The empirical application uncovers
positive spillover effects in terms of articles’ citations eight years post publication.
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